alexa Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Win KY, Feng SS

Abstract Share this page

Abstract This study evaluated cellular uptake of polymeric nanoparticles by using Caco-2 cells, a human colon adenocarcinoma cell line, as an in vitro model with the aim to apply nanoparticles of biodegradable polymers for oral chemotherapy. The feasibility was demonstrated by showing the localization and quantification of the cell uptake of fluorescent polystyrene nanoparticles of standard size and poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with polyvinyl alcohol (PVA) or vitamin E TPGS. Coumarin-6 loaded PLGA nanoparticles were prepared by a modified solvent extraction/evaporation method and characterized by laser light scattering for size and size distribution, scanning electron microscopy (SEM) for surface morphology, zeta-potential for surface charge, and spectrofluorometry for fluorescent molecule release from the nanoparticles. The effects of particle size and particle surface coating on the cellular uptake of the nanoparticles were quantified by spectrofluorometric measurement. Cellular uptake of vitamin E TPGS-coated PLGA nanoparticles showed 1.4 folds higher than that of PVA-coated PLGA nanoparticles and 4-6 folds higher than that of nude polystyrene nanoparticles. Images of confocal laser scanning microscopy, cryo-SEM and transmission electron microscopy clearly evidenced the internalization of nanoparticles by the Caco-2 cells, showing that surface modification of PLGA nanoparticles with vitamin E TPGS notably improved the cellular uptake. It is highly feasible for nanoparticles of biodegradable polymers to be applied to promote oral chemotherapy. This article was published in Biomaterials and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords