alexa Effects of putative catalytic base mutation E211Q on ABCG2-mediated methotrexate transport.


Journal of Cancer Science & Therapy

Author(s): Hou YX, Li CZ, Palaniyandi K, Magtibay PM, Homolya L,

Abstract Share this page

Abstract ABCG2 is a half-ATP binding cassette (ABC) drug transporter that consists of a nucleotide binding domain (NBD) followed by a transmembrane domain. This half-ABC transporter is thought to form a homodimer in the plasma membrane where it transports anticancer drugs across the biological membranes in an ATP-dependent manner. Substitution of the putative catalytic residue E211 with a nonacidic amino acid glutamine (E211Q) completely abolished its ATPase activity and ATP-dependent methotrexate transport, suggesting that ATP hydrolysis is required for the ATP-dependent solute transport. However, whether one ATP hydrolysis or two ATP hydrolyses in the homodimer of ABCG2 with the NBD.ATP.ATP.NBD sandwich structure is/are required for the ATP-dependent solute transport is not known yet. To address this question, we have made an YFP/ABCG2 fusion protein and expressed this 99 kDa fusion protein alone or along with the 70 kDa E211Q-mutated ABCG2 in BHK cells. Although membrane vesicles prepared from BHK cells expressing YFP/ABCG2 exert higher ATPase activity than that of wt ABCG2, the dATP-dependent methotrexate transport activities of these two proteins are the same. Interestingly, membrane vesicles prepared from BHK cells expressing both YFP/ABCG2 and E211Q-mutated ABCG2 (with a ratio of 1:1) form homodimers and heterodimer and exert 55\% of wt ABCG2 ATPase activity that can be further enhanced by anticancer drugs, suggesting that the wt NBD in the heterodimer of YFP/ABCG2 and E211Q may be able to hydrolyze ATP. Furthermore, the membrane vesicles containing both YFP/ABCG2 and E211Q exert approximately 79\% of wt ABCG2-mediated methotrexate transport activity, implying that the heterodimer harboring YFP/ABCG2 and E211Q may be able to transport the anticancer drug methotrexate across the biological membranes.
This article was published in Biochemistry and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version