alexa Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy) acetic acid in soils.
Nursing

Nursing

Journal of Nursing & Care

Author(s): Ogram AV, Jessup RE, Ou LT, Rao PS

Abstract Share this page

Abstract Three mathematical models were proposed to describe the effects of sorption of both bacteria and the herbicide (2,4-dichlorophenoxy)acetic acid (2,4-D) on the biological degradation rates of 2,4-D in soils. Model 1 assumed that sorbed 2,4-D is not degraded, that only bacteria in solution are capable of degrading 2,4-D in solution, and that sorbed bacteria are not capable of degrading either sorbed or solution 2,4-D. Model 2 stated that only bacteria in the solution phase degrade 2,4-D in solution and that only sorbed bacteria degrade sorbed 2,4-D. Model 3 proposed that sorbed 2,4-D is completely protected from degradation and that both sorbed and solution bacteria are capable of degrading 2,4-D in solution. These models were tested by a series of controlled laboratory experiments. Models 1 and 2 did not describe the data satisfactorily and were rejected. Model 3 described the experimental results quite well, indicating that sorbed 2,4-D was completely protected from biological degradation and that sorbed- and solution-phase bacteria degraded solution-phase 2,4-D with almost equal efficiencies.
This article was published in Appl Environ Microbiol and referenced in Journal of Nursing & Care

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords