alexa Effects of stent geometry on local flow dynamics and resulting platelet deposition in an in vitro model.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Duraiswamy N, Cesar JM, Schoephoerster RT, Moore JE Jr

Abstract Share this page

Abstract Platelet deposition has been shown previously to depend on convective transport patterns, visualized by the instantaneous streamlines. Previous attempts to quantify hemodynamic studies of platelet deposition have been limited to 2D geometries. This study provides a physiologic assessment of the effects of stent geometry on platelet deposition by using actual 3D stents. Human blood with fluorescently labeled platelets was circulated through an in vitro system producing physiologic pulsatile flow in a compliant tube in which Bx Velocity, Wallstent and Aurora stents were implanted. Computational fluid dynamic models of the stents provided flow data to aid in explaining localized platelet deposition. Regions of constant flow separation proximal and distal to the strut exhibited very low platelet deposition. Platelet deposition was highest just downstream of flow stagnation regions due to convection towards the wall, then decreased with axial distance from the strut as flow streamlines became locally parallel to the wall. The nearly helically recirculating regions near the Bx Velocity stent connectors exhibited complex fluid dynamics with more platelet deposition, than the smaller separation regions. Localized platelet deposition was heavily dependent on flow convection, suggesting that arterial reaction to stents can be modulated in part by altering the hemodynamics associated with stent design.
This article was published in Biorheology and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords