alexa Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): ThieleBruhn S, Beck IC

Abstract Share this page

Abstract Increasingly often soil residual concentrations of pharmaceutical antibiotics are detected, while their ecotoxic relevance is scarcely known. Thus, dose related effects of two antibiotics, sulfapyridine and oxytetracycline, on microorganisms of two different topsoils were investigated. The fumigation-extracted microbial C (E(C)) and ergosterol were determined to indicate soil microbial and fungal biomass, respectively. Microbial activity was tested as basal respiration (BR), dehydrogenase activity (DHA), substrate-induced respiration (SIR), and Fe(III) reduction. The BR and DHA were uninfluenced even at antibiotic concentrations of 1000 microg g(-1). This revealed that an activation of microbial growth through nutrient substrate addition is required to test possible effects of the bacteriostatic antibiotics. In addition, the effects of both antibiotics were time dependent, showing that short-term tests were not suitable. Clear dose-response relations were determined with SIR when the short-term incubation of 4h was extended into the growth phase of the microorganisms (24 and 48 h). The Fe(III) reduction test, with a 7-d incubation, was also found to be suitable for toxicity testing of antibiotics in soils. Effective doses inhibiting the microbial activity by 10\% (ED(10)) ranged from total antibiotic concentrations of 0.003-7.35 microg g(-1), depending on the antibiotic compound and its soil adsorption. Effective solution concentrations (EC(10)), calculated from distribution coefficients, ranged from 0.2 to 160 ng g(-1). The antibiotics significantly (p<0.05) reduced numbers of soil bacteria, resulting in dose related shifts in the fungal:bacterial ratio, which increased during 14 d, as determined from analysis of ergosterol and E(C). It was concluded that pharmaceutical antibiotics can exert a temporary selective pressure on soil microorganisms even at environmentally relevant concentrations. This article was published in Chemosphere and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version