alexa Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Brandi LS, Bertolini R, Santini L, Cavani S

Abstract Share this page

Abstract OBJECTIVE: To evaluate the effect of acute changes in minute ventilation (VE) on oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory quotient, and energy expenditure during volume-controlled mechanical ventilation in the critically ill surgical patient. The effects on some oxygen transport variables were assessed as well. DESIGN: Prospective, randomized clinical study SETTING: Adult surgical intensive care unit of a university teaching hospital. PATIENTS: Twenty adult critically ill surgical patients were studied during volume-controlled mechanical ventilation. INTERVENTIONS: After a basal period of stability (no changes over time in body temperature, energy expenditure, blood gases, acid-base status, cardiac output, and ventilatory parameters), VE was then randomly either increased or reduced (+/-35\%) by a change in tidal volume (VT), while respiratory rate and inspiratory/expiratory ratio were kept constant. Settings were then maintained for 120 mins. During the study, patients were sedated and paralyzed. MEASUREMENTS AND MAIN RESULTS: VO2, VCO2, and respiratory quotient were measured continuously by a Nellcor Puritan Bennett 7250 metabolic monitor (Nellcor Puritan Bennett, Carlsbad, CA). Hemodynamic and oxygen transport parameters were obtained every 15 mins during the study. Despite large changes in VE, VO2 and energy expenditure did not change significantly either in the increased or in the reduced VE groups. After 15 mins, VCO2 and respiratory quotient changed significantly after ventilator resetting. VCO2 increased by 10.5 +/- 1.1\% (from 2.5 +/- 0.10 to 2.8 +/- 0.12 mL/min/kg, p< .01) in the increased VE group and decreased by 12.4 +/- 2.1\% (from 2.7 +/- 0.17 to 2.4 +/- 0.16 mL/min/kg, p< .01) in the reduced VE group. Similarly, respiratory quotient increased by 16.2\% +/- 2.2\% (from 0.87 +/- 0.02 to 1.02 +/- 0.02, p< .01) and decreased by 17.2\% +/- 1.8\% (from 0.88 +/- 0.02 to 0.73 +/- 0.02, p< .01). VCO2 normalized in the reduced VE group, but remained higher than baseline in the increased VE group. Respiratory quotient did not normalize in both groups and remained significantly different from baseline at the end of the study. Cardiac index, oxygen delivery, and mixed venous oxygen saturation increased, while oxygen extraction index decreased significantly in the reduced VE group. Neither of the mentioned parameters changed significantly in the increased VE group. CONCLUSIONS: We conclude that, during controlled mechanical ventilation, the time course and the magnitude of the effect on gas exchange and energy expenditure measurements caused by acute changes in VE suggest that VO2 and energy expenditure measurements can be used reliably to evaluate and quantify metabolic events and that VCO2 and respiratory quotient measurements are useless for metabolic purposes at least for 120 mins after ventilator resetting.
This article was published in Crit Care Med and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords