alexa Efferent control of cochlear inner hair cell responses in the guinea-pig.

Journal of Phonetics & Audiology

Author(s): Brown MC, Nuttall AL

Abstract Share this page

Abstract The efferent crossed olivocochlear bundle (c.o.c.b.) was electrically stimulated during intracellular recordings from cochlear inner hair cells in anaesthetized guinea-pigs. The effect of c.o.c.b. stimulation was to decrease the magnitude of the inner hair cell depolarizing component (d.c.) and alternating component (a.c.) receptor potentials evoked by tone bursts at the characteristic frequency. At low sound pressure levels, the decrease in receptor potentials caused by c.o.c.b. stimulation was equivalent to decreasing the sound intensity by 9-24 dB. C.o.c.b. stimulation usually had a similar effect on the compound action potential of the auditory nerve. The change in inner hair cell membrane resistance during moderate-level sound was measured for sound alone and when sound was accompanied by c.o.c.b. stimulation. Sound alone produced a greater membrane resistance change than sound with c.o.c.b. stimulation, in proportion to the d.c. receptor potential during the same conditions. The time course of the c.o.c.b. effect was slow, with 50-250 ms required for a full effect and for recovery. The effects of varying the frequency and voltage of electrical stimulation were similar for the d.c. receptor potential and for the compound action potential. For sounds of high level and for frequencies well below the characteristic frequency, c.o.c.b. stimulation was less effective in reducing receptor potentials. Frequency tuning curves for the d.c. receptor potential taken during intervals of continuous c.o.c.b. stimulation showed decreases in sensitivity primarily in the tip segment of the tuning curve. When no sound stimulus was present, the resting membrane potential was relatively unaltered during c.o.c.b. stimulation. The resting membrane resistance did not change during c.o.c.b. stimulation. Since the c.o.c.b. innervates mainly the outer hair cells, these results strongly suggest that changes in outer hair cell activity can influence the receptor potentials of inner hair cells and thus alter the transmission of acoustic responses to the central nervous system.
This article was published in J Physiol and referenced in Journal of Phonetics & Audiology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version