alexa Efferent control of cochlear inner hair cell responses in the guinea-pig.

Journal of Phonetics & Audiology

Author(s): Brown MC, Nuttall AL

Abstract Share this page

Abstract The efferent crossed olivocochlear bundle (c.o.c.b.) was electrically stimulated during intracellular recordings from cochlear inner hair cells in anaesthetized guinea-pigs. The effect of c.o.c.b. stimulation was to decrease the magnitude of the inner hair cell depolarizing component (d.c.) and alternating component (a.c.) receptor potentials evoked by tone bursts at the characteristic frequency. At low sound pressure levels, the decrease in receptor potentials caused by c.o.c.b. stimulation was equivalent to decreasing the sound intensity by 9-24 dB. C.o.c.b. stimulation usually had a similar effect on the compound action potential of the auditory nerve. The change in inner hair cell membrane resistance during moderate-level sound was measured for sound alone and when sound was accompanied by c.o.c.b. stimulation. Sound alone produced a greater membrane resistance change than sound with c.o.c.b. stimulation, in proportion to the d.c. receptor potential during the same conditions. The time course of the c.o.c.b. effect was slow, with 50-250 ms required for a full effect and for recovery. The effects of varying the frequency and voltage of electrical stimulation were similar for the d.c. receptor potential and for the compound action potential. For sounds of high level and for frequencies well below the characteristic frequency, c.o.c.b. stimulation was less effective in reducing receptor potentials. Frequency tuning curves for the d.c. receptor potential taken during intervals of continuous c.o.c.b. stimulation showed decreases in sensitivity primarily in the tip segment of the tuning curve. When no sound stimulus was present, the resting membrane potential was relatively unaltered during c.o.c.b. stimulation. The resting membrane resistance did not change during c.o.c.b. stimulation. Since the c.o.c.b. innervates mainly the outer hair cells, these results strongly suggest that changes in outer hair cell activity can influence the receptor potentials of inner hair cells and thus alter the transmission of acoustic responses to the central nervous system.
This article was published in J Physiol and referenced in Journal of Phonetics & Audiology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords