alexa Efficacy and safety of posteromedial translation for correction of thoracic curves in adolescent idiopathic scoliosis using a new connection to the spine: the Universal Clamp.
Orthopaedics

Orthopaedics

Journal of Osteoporosis and Physical Activity

Author(s): Mazda K, Ilharreborde B, Even J, Lefevre Y, Fitoussi F,

Abstract Share this page

Abstract Correction of adolescent idiopathic scoliosis (AIS) has been reported with various systems. All-screw constructs are currently the most popular, but they have been associated with a significant decrease in thoracic kyphosis, with a potential risk of junctional kyphosis, not observed with hybrid constructs in the literature. In addition, it is important to weigh potential advantages of pedicle screw fixation against risks specific to its use. Because hybrid constructs are associated with a lower risk of complications and better sagittal correction than all-screw constructs, at present we use lumbar pedicle screws combined with a new sublaminar connection to the spine (Universal Clamps) at thoracic levels. The purpose of this study was to determine the efficacy and safety of the Universal Clamp (UC) posteromedial translation technique for correction of AIS. Seventy-five consecutive patients underwent posterior spinal fusion and hybrid instrumentation for progressive AIS. Correction was performed at the thoracic level using posteromedial translation. At the lumbar level, correction was performed using in situ contouring and compression/distractions maneuvers. A minimum 2-year follow-up was required. Medical data and radiographs were prospectively analyzed and compared using a paired t test. The average age at surgery was 15 years and 4 months (+/-19 months). The average number of levels fused was 12+/-1.6. The mean follow-up was 30+/-5 months. The average preoperative Cobb angle of the major curve was 60 degrees+/-20 degrees. The immediate postoperative major curve correction averaged 66+/-13\%. The average loss of correction of the major curve between the early postoperative assessment and latest follow-up was 3.5 degrees+/-1.4 degrees . The mean Cincinnati correction index was 1.7+/-0.8 postoperatively, and 1.57+/-1 at last follow up. The mean rotation of the apical vertebra was corrected from 23.3 degrees+/-9 degrees preoperatively to 7.3 degrees+/-5 degrees at last follow up (69\% improvement, P<0.0001). In the sagittal plane, the mean thoracic kyphosis improved from 23.8 degrees+/-14.2 degrees preoperatively to 32.3 degrees+/-7.3 degrees at last follow up. For the 68 patients who had a normokyphotic or a hypokyphotic sagittal modifier, thoracic kyphosis increased from 20.5 degrees+/-9.9 degrees to 31.8 degrees+/-7.4 degrees, corresponding to a mean kyphosis correction of 55\% at last follow up. No intraoperative complication occurred and none of the patients developed proximal junctional kyphosis during the follow up. The principal limitation of the UC technique was the rate of proximal posterior prominence (14.6\%), leading us to recommend the use of conventional claws at the upper extremity of the construct. The technique was safe, and reduced operative time, radiation exposure, and blood loss. While achieving correction of deformity in the coronal and axial planes equivalent to the best reported results of all-screw or previous hybrid constructs, the UC hybrid technique appears to provide superior correction in the sagittal plane. The excellent outcome in all three planes was maintained at 2 year follow up.
This article was published in Eur Spine J and referenced in Journal of Osteoporosis and Physical Activity

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords