alexa Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Lee L, Sudentas P, Donohue B, Asrican K, Worku A,

Abstract Share this page

Abstract Tuberous sclerosis complex (TSC) is a familial tumor disorder for which there is no effective medical therapy. Disease-causing mutations in the TSC1 or TSC2 gene lead to increased mammalian target of rapamycin (mTOR) kinase activity in the conserved mTOR signaling pathway, which regulates nutrient uptake, cell growth, and protein translation. The normal function of TSC1 and TSC2 gene products is to form a complex that reduces mTOR kinase activity. Thus, mTOR kinase inhibition may be a useful targeted therapeutic approach. Elevated interferon-gamma (IFN-gamma) expression is associated with decreased severity of kidney tumors in TSC patients and mouse models; therefore, IFN-gamma also has therapeutic potential. We studied cohorts of Tsc2+/- mice and a novel mouse model of Tsc2-null tumors in order to evaluate the efficacy of targeted therapy for TSC. We found that treatment with either an mTOR kinase inhibitor (CCI-779, a rapamycin analog) or with IFN-gamma reduced the severity of TSC-related disease without significant toxicity. These results constitute definitive preclinical data that justify proceeding with clinical trials using these agents in selected patients with TSC and related disorders. This article was published in Genes Chromosomes Cancer and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords