alexa Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Madhankumar AB, SlagleWebb B, Wang X, Yang QX, Antonetti DA,

Abstract Share this page

Abstract Human glioblastoma tumors selectively express receptors for interleukin 13 (IL-13). In a previous study, we showed that liposomes, when conjugated with IL-13, will deliver chemotherapeutics to a subcutaneous glioma tumor model in mice much more effectively than conventional unconjugated liposomes. Based on this observation, we developed an intracranial brain tumor model in nude mice using human U87 glioma cells. Mice receiving weekly i.p. injections of 15 mg/kg of doxorubicin encapsulated in IL-13-conjugated liposomes had a 5-fold reduction in the intracranial tumor volume over 6 weeks and four of seven animals survived >200 days after tumor implantation. In contrast, the animals receiving unconjugated liposomes with the same doxorubicin concentration did not survive beyond 35 days and there was no evidence of tumor size reduction. The presence of liposomes with doxorubicin in the tumor was shown by taking advantage of the selective expression of IL-13 receptors on the tumor cells and the endogenous fluorescence of doxorubicin. There was no increase in the indices of toxicity in animals receiving the doxorubicin-containing liposomes. Finally, a model of the blood-brain barrier was used to show that the nanovesicles do not harm the endothelial cells yet maintain their toxicity to astrocytoma cells. This approach is necessary to show the efficacy of this targeting platform for tumors in which the blood-brain barrier is not compromised and as a potential use of the nanovesicle system as a surveillance mechanism to prevent recurrence. These data show that IL-13 targeted nanovesicles are a viable option for the treatment of brain tumors. This article was published in Mol Cancer Ther and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords