alexa Efficient breaking of water oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Mohebali G, Kaytash A, Etemadi N

Abstract Share this page

Abstract Water-oil emulsions occur throughout oil production, transportation, and processing. The breaking of the water/oil emulsion improves oil quality and as a consequence chemically synthesized de-emulsifiers are commonly used in the petroleum industries. Microbial de-emulsifiers represent potential alternatives to the chemicals and may become important products for petroleum industries. The main goal of this work was isolation, identification, and characterization of an efficient de-emulsifying bacterium. Following a multi-step enrichment programme a de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1was isolated from the oil-polluted sandy bank of Siri Island, Iran. The presence of an oil phase in growth medium was found to be unnecessary for production of the de-emulsifier. The de-emulsifying activity of both the whole culture and the cells of this strain was examined using a model multiple water-crude oil (w/o/w) emulsion. This w/o/w emulsion was used for the first time in microbial de-emulsification research. Whole cells of strain RIPI5-1 exhibited high de-emulsifying activity during the late-exponential growth and stationary phases; de-emulsifying activity of the whole culture was highest during the early-exponential growth phase. The time course of de-emulsification by whole culture and whole cells of strain RIPI5-1 was investigated; the initial rate (DeI(1)) of breaking of the multiple water-crude oil emulsion by whole culture and whole cells was calculated as 11\% and 54\%, respectively. However, overall de-emulsification (DeI(8.5)) for whole culture and whole cells was calculated as 63\% and 72\%, respectively. A clear correlation was observed between cell surface hydrophobicity and the de-emulsifying activity of whole cells. With the water/kerosene emulsion, emulsion half-life (t(1/2)) was found to be <0.5h. The potential activity of this strain was also explained using a complex oilfield emulsion. Copyright © 2012 Elsevier B.V. All rights reserved. This article was published in Colloids Surf B Biointerfaces and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version