alexa Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination.
Genetics

Genetics

Advancements in Genetic Engineering

Author(s): Chen C, Fenk LA, de Bono M

Abstract Share this page

Abstract Cas9 is an RNA-guided double-stranded DNA nuclease that participates in clustered regularly interspaced short palindromic repeats (CRISPR)-mediated adaptive immunity in prokaryotes. CRISPR-Cas9 has recently been used to generate insertion and deletion mutations in Caenorhabditis elegans, but not to create tailored changes (knock-ins). We show that the CRISPR-CRISPR-associated (Cas) system can be adapted for efficient and precise editing of the C. elegans genome. The targeted double-strand breaks generated by CRISPR are substrates for transgene-instructed gene conversion. This allows customized changes in the C. elegans genome by homologous recombination: sequences contained in the repair template (the transgene) are copied by gene conversion into the genome. The possibility to edit the C. elegans genome at selected locations will facilitate the systematic study of gene function in this widely used model organism.
This article was published in Nucleic Acids Res and referenced in Advancements in Genetic Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Epigenetics 2017
    November 13-15, 2017 Frankfurt, Germany
  • International Conference on Genetic Counseling and Genomic Medicine
    February 12-13, 2018 Madrid, Spain

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords