alexa Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway.
Genetics & Molecular Biology

Genetics & Molecular Biology

Fungal Genomics & Biology

Author(s): Jiang Y, Davis C, Broach JR

Abstract Share this page

Abstract Strains carrying ras2(318S) as their sole RAS gene fail to elicit a transient increase in cAMP levels following addition of glucose to starved cells but maintain normal steady-state levels of cAMP under a variety of growth conditions. Such strains show extended delays in resuming growth following transition from a quiescent state to glucose-containing growth media, either in emerging from stationary phase or following inoculation as spores onto fresh media. Otherwise, growth of such strains is indistinguishable from that of RAS2(+) strains. ras2(318S) strains also exhibit a delay in glucose-stimulated phosphorylation and turnover of fructose-1,6-bisphosphatase, a substrate of the cAMP-dependent protein kinase A (PKA) and a key component of the gluconeogenic branch of the glycolytic pathway. Finally Tpk(w) strains, which fail to modulate PKA in response to fluctuations in cAMP levels, show the same growth delay phenotypes, as do ras2(318S) strains. These observations indicate that the glucose-induced cAMP spike results in a transient activation of PKA, which is required for efficient transition of yeast cells from a quiescent state to resumption of rapid growth. This represents the first demonstration that yeast cells use the Ras pathway to transmit a signal to effect a biological change in response to an upstream stimulus.
This article was published in EMBO J and referenced in Fungal Genomics & Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version