alexa Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation.
Oncology

Oncology

OMICS Journal of Radiology

Author(s): Shepherd RK, Hatsushika S, Clark GM

Abstract Share this page

Abstract Histological studies have shown that the Melbourne/Cochlear electrode array lies along the outer wall of the scala tympani and is therefore some distance from the residual VIIIth nerve elements. In order to investigate the influence of electrode position on neural excitation we systematically varied the position of the electrode array within the cat scala tympani while recording electrically evoked auditory brainstem responses (EABRs). Using both normal hearing and long-term deafened animals, we observed significant reductions in EABR thresholds as the electrode array was moved from the outer wall towards the modiolus. Further threshold reductions were observed when the array was placed underneath the osseous spiral lamina (OSL) close to the peripheral dendrites. These changes were independent of the bipolar inter-electrode separation, and were observed over a wide range of cochlear pathologies varying from normal to a moderate spiral ganglion cell loss. Interestingly, the one animal exhibiting extensive neural loss showed no correlation between EABR threshold and electrode position. There was also a general decrease in the gradient of the EABR input-output function as the electrode array was moved closer to the neural elements. This was, however, only statistically significant when the electrode was positioned adjacent to the peripheral dendrites. Significant reductions in EABR threshold were also observed as the inter-electrode spacing of the bipolar electrodes was increased. The gradient of the EABR input-output function also increased with increasing inter-electrode spacing, although again, this was only significant when the electrode array was positioned close to the neural elements. The present results indicate that the optimum placement of a Melbourne/Cochlear electrode array is adjacent to the peripheral dendrites. However, such a site would be difficult to achieve in practice while minimizing insertion trauma. An array lying adjacent to the modiolus would be a safe alternative while ensuring a significant reduction in threshold compared with the existing site (outer wall). This placement should result in more localized neural excitation patterns, an increase in the number of bipolar electrodes available, together with an increase in their dynamic range. These changes may lead to further improvements in speech perception among cochlear implant patients.
This article was published in Hear Res and referenced in OMICS Journal of Radiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords