alexa Electrocardiographic morphology changes with different type of repolarization dispersions.
Toxicology

Toxicology

Journal of Clinical Toxicology

Author(s): Xue J, Chen Y, Han X, Gao W

Abstract Share this page

Abstract BACKGROUND: T-wave morphology changes have been linked to heterogeneity of ventricular repolarization and increase of arrhythmia vulnerability. Therefore, century-long debates around the genesis of T wave become even more relevant. Here are some interesting questions for the debates: (1) why T waves are usually concordant with QRS complex? (2) Is there a significant and consistent transmural dispersion of repolarization across heart wall? (3) What kind of T-wave morphology changes can be induced by either transmural or apical-basal dispersion of repolarization? METHOD: The previously developed GE's cell-to-electrocardiogram (ECG) model (GE Healthcare, Milwaukee, WI) was used to study the relation between cellular behavior and the T-wave morphology. The study focused on 2 types of repolarization dispersions: (1) Transmural (from endocardium to epicardium) and (2) Apical-basal (from apex to base of ventricles). More specifically, the transmural dispersions were created by adjusting the slow and fast delayed potassium rectifier current (Iks, Ikr) and transient outward current (Ito), on endocardial, midmyocardial (M cell) and epicardial cells separately. The apical-basal dispersion was adjusted according to the coordinates along the axis from the base to the apex of the ventricle. The contribution of M cell toward T-wave morphology were studied by adjusting the M cell's repolarization time in the range of shorter to longer than those of endocardial repolarization time. RESULTS: In the global transmural dispersion cases, QT interval is prolonged from 350 to 450 milliseconds, T-peak to T-end interval (TpTe) is prolonged from 50 to 130 milliseconds, and T-wave notches appeared when the heterogeneity is increased. In the localized transmural dispersion cases, significant T-wave morphology features such as TpTe, T-wave notches appeared in very limited precordial leads. In the global apical-basal dispersion cases, main T-wave change is on the amplitude, and T waves in several precordial leads and lead II turn to positive from negative. And the localized apical-basal dispersion does not generate significant T-wave morphology changes. CONCLUSIONS: The cell-to-ECG model provides a unique way to study electrophysiology and to link physiologic factors to ECG morphology changes. The simulation results suggest that the apical-basal dispersion of repolarization contributes to positive T wave more than the transmural dispersion. The contribution of localized transmural dispersion to surface ECG is very much localized to certain precordial leads. Copyright © 2010 Elsevier Inc. All rights reserved. This article was published in J Electrocardiol and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords