alexa Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles.

Journal of Clinical Diabetes & Practice

Author(s): Jena BK, Raj CR

Abstract Share this page

Abstract Development of a highly sensitive nanostructured electrochemical biosensor based on the integrated assembly of dehydrogenase enzymes and gold (Au) nanoparticle is described. The Au nanoparticles (AuNPs) have been self-assembled on a thiol-terminated, sol-gel-derived, 3-D, silicate network and enlarged by hydroxylamine seeding. The AuNPs on the silicate network efficiently catalyze the oxidation of NADH with a decrease in overpotential of approximately 915 mV in the absence of any redox mediator. The surface oxides of AuNP function as an excellent mediator, and a special inverted "V" shape voltammogram at less positive potential was observed for the oxidation of NADH. The AuNP self-assembled sol-gel network behaves like a nanoelectrode ensemble. The nanostructured electrode shows high sensitivity (0.056 +/- 0.001 nA/nM) toward NADH with an amperometric detection limit of 5 nM. The electrode displays excellent operational and storage stability. A novel methodology for the fabrication of a NADH-dependent dehydrogenase biosensor based on the integration of dehydrogenase enzyme and AuNPs with the silicate network is developed. The enzymatically generated NADH is, in turn, electrocatalytically detected by the AuNPs on the silicate network. The integrated assembly has been successfully used for the amperometric biosensing of lactate and ethanol at a potential of -5 mV. The biosensor is very stable and highly sensitive, and it has a fast response time. The excellent performance validates the integrated assembly as an attractive sensing element for the development of new dehydrogenase biosensors. This article was published in Anal Chem and referenced in Journal of Clinical Diabetes & Practice

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version