alexa Electromagnetic radiation and Radon-222 gas emissions as precursors of seismic activity
Geology & Earth Science

Geology & Earth Science

Journal of Earth Science & Climatic Change

Author(s): Petraki Ermioni

Abstract Share this page

Earthquakes are amongst the most destructive of natural phenomena and have been the subject of significant research effort over many decades, to predict the onset of seismic events. Electromagnetic emissions detected prior to earthquakes provide a potential data source for seismic predictions and research suggests that specific pre-seismic electromagnetic activity can be directly related to specific earthquakes although it is still an open issue as to the precise links between these electromagnetic emissions and subsequent earthquakes. In this research, findings of the long memory or the self-organization of several pre-earthquake MHz electromagnetic time-series provide significant outcomes regarding the earthquake prediction. It is also recognised that enhanced radon gas emission has an equally long history as being associated with seismic activity. In general, several anomalous soil radon emissions have been observed prior to earthquakes and this has been recorded all over the world. The abnormal soil radon exhalation from the interior of the earth has been associated with earthquakes and is considered as an important field of research. The research reported in this thesis compared and contrasted the merits of combining electromagnetic emission data and radon exhalation data as precursors of earthquakes with the aim of enhancing earthquake prediction methodology. The findings from the long-memory analysis of radon disturbances in the soil indicated a very significant issue: the radon disturbances in the soil prior to earthquakes exhibit similar behaviour as the MHz RF disturbances of general failure. So, the radon precursors and the MHz electromagnetic correspond to the same pre-earthquake phase. Geological explanations were proposed in view of the asperity model. Persistent and anti-persistent MHz anomalies were due to the micro-cracking of the heterogeneous medium of the earth's crust which may have led the system's evolution towards the global failure. Fractal methods have been used on historical data, to investigate MHz electromagnetic time-series spectra on emissions preceding major earthquakes over the period 2007 to 2014 and the characteristics of enhanced radon emissions have been studied over the period 2008 to 2015 for seismic events occurring in the Aegean Region. It has been found that both the electromagnetic emissions and the radon exhalation data exhibit similar fractal behaviour and are associated with impending seismic activity. Hence both phenomena are relevant to earthquake predictions and should both be employed in any systematic approach to this problem as the varying geological and geographic conditions under which earthquakes can occur, might preclude one or other data from being measurable. According to the several techniques applied in this thesis, all should be employed in sequential steps, albeit the power-law spectral fractal analysis is the most significant to trace long-memory patterns of 1/f processes as those of the processes of earthquakes.

This article was published in Brunel University London and referenced in Journal of Earth Science & Climatic Change

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version