alexa Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Reinecke H, MacDonald GH, Hauschka SD, Murry CE

Abstract Share this page

Abstract Skeletal myoblasts form grafts of mature muscle in injured hearts, and these grafts contract when exogenously stimulated. It is not known, however, whether cardiac muscle can form electromechanical junctions with skeletal muscle and induce its synchronous contraction. Here, we report that undifferentiated rat skeletal myoblasts expressed N-cadherin and connexin43, major adhesion and gap junction proteins of the intercalated disk, yet both proteins were markedly downregulated after differentiation into myo-tubes. Similarly, differentiated skeletal muscle grafts in injured hearts had no detectable N-cadherin or connexin43; hence, electromechanical coupling did not occur after in vivo grafting. In contrast, when neonatal or adult cardiomyocytes were cocultured with skeletal muscle, approximately 10\% of the skeletal myotubes contracted in synchrony with adjacent cardiomyocytes. Isoproterenol increased myotube contraction rates by 25\% in coculture without affecting myotubes in monoculture, indicating the cardiomyocytes were the pacemakers. The gap junction inhibitor heptanol aborted myotube contractions but left spontaneous contractions of individual cardiomyocytes intact, suggesting myotubes were activated via gap junctions. Confocal microscopy revealed the expression of cadherin and connexin43 at junctions between myotubes and neonatal or adult cardiomyocytes in vitro. After microinjection, myotubes transferred dye to neonatal cardiomyocytes via gap junctions. Calcium imaging revealed synchronous calcium transients in cardiomyocytes and myotubes. Thus, cardiomyocytes can form electromechanical junctions with some skeletal myotubes in coculture and induce their synchronous contraction via gap junctions. Although the mechanism remains to be determined, if similar junctions could be induced in vivo, they might be sufficient to make skeletal muscle grafts beat synchronously with host myocardium.
This article was published in J Cell Biol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version