alexa Electron donors for biological sulfate reduction.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Liamleam W, Annachhatre AP

Abstract Share this page

Abstract Biological sulfate reduction is widely used for treating sulfate-containing wastewaters from industries such as mining, tannery, pulp and paper, and textiles. In biological reduction, sulfate is converted to hydrogen sulfide as the end product. The process is, therefore, ideally suited for treating metal-containing wastewater from which heavy metals are simultaneously removed through the formation of metal sulfides. Metal sulfide precipitates are more stable than metal hydroxides that are sensitive to pH change. Theoretically, conversion of 1 mol of sulfate requires 0.67 mol of chemical oxygen demand or electron donors. Sulfate rich wastewaters are usually deficient in electron donors and require external addition of electron donors in order to achieve complete sulfate reduction. This paper reviews various electron donors employed in biological sulfate reduction. Widely used electron donors include hydrogen, methanol, ethanol, acetate, lactate, propionate, butyrate, sugar, and molasses. The selection criteria for suitable electron donors are discussed. This article was published in Biotechnol Adv and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version