alexa Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.


Biochemistry & Analytical Biochemistry

Author(s): Badger MR, von Caemmerer S, Ruuska S, Nakano H

Abstract Share this page

Abstract Linear electron transport in chloroplasts produces a number of reduced components associated with photosystem I (PS I) that may subsequently participate in reactions that reduce O2. The two primary reactions that have been extensively studied are: first, the direct reduction of O2 to superoxide by reduced donors associated with PS I (the Mehler reaction), and second, the rubisco oxygenase (ribulose 1,5-bisphosphate carboxylase oxygenase EC reaction and associated peroxisomal and mitochondrial reactions of the photorespiratory pathway. This paper reviews a number of recent and past studies with higher plants, algae and cyanobacteria that have attempted to quantify O2 fluxes under various conditions and their contributions to a number of roles, including photon energy dissipation. In C3 and Crassulacean acid metabolism (CAM) plants, a Mehler O2 uptake reaction is unlikely to support a significant flow of electron transport (probably less than 10\%). In addition, if it were present it would appear to scale with photosynthetic carbon oxidation cycle (PCO) and photosynthetic carbon reduction cycle (PCR) activity This is supported by studies with antisense tobacco plants with reduced rubisco at low and high temperatures and high light, as well as studies with potatoes, grapes and madrone during water stress. The lack of significant Mehler in these plants directly argues for a strong control of Mehler reaction in the absence of ATP consumption by the PCR and PCO cycles. The difference between C3 and C4 plants is primarily that the level of light-dependent O2 uptake is generally much lower in C4 plants and is relatively insensitive to the external CO2 concentration. Such a major difference is readily attributed to the operation of the C4 CO2 concentrating mechanism. Algae show a range of light-dependent O2 uptake rates, similar to C4 plants. As in C4 plants, the O2 uptake appears to be largely insensitive to CO2, even in species that lack a CO2 concentrating mechanism and under conditions that are clearly limiting with respect to inorganic carbon supply. A part explanation for this could be that many algal rubsicos have considerably different oxygenase kinetic properties and exhibit far less oxygenase activity in air. This would lead to the conclusion that perhaps a greater proportion of the observed O2 uptake may be due to a Mehler reaction and less to rubisco, compared with C3 plants. In contrast to algae and higher plants, cyanobacteria appear to have a high capacity for Mehler O2 uptake, which appears to be not well coupled or limited by ATP consumption. It is likely that in all higher plants and algae, which have a well-developed non-photochemical quenching mechanism, non-radiative energy dissipation is the major mechanism for dissipating excess photons absorbed by the light-harvesting complexes under stressful conditions. However, for cyanobacteria, with a lack of significant non-photochemical quenching, the situation may well be different.
This article was published in Philos Trans R Soc Lond B Biol Sci and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

  • Bozena Futoma-Koloch
    C3 component deposition on Salmonella O48 cells characterized by sialylated lipopolysaccharide and different pattern of outer membrane proteins
    PPT Version | PDF Version
  • Sumru Savas
    No relationship between lipoprotein-associated phospholipase A2, proinflammatory cytokines, and neopterin   in Alzheimer's disease
    PPT Version | PDF Version
  • Mapitsi S Thantsha
    In vitro antagonistic effects of Listeria adhesion protein (LAP)-expressing Lactobacillus casei against Listeria monocytogenes and Salmonella Typhimurium Copenhagen
    PPT Version | PDF Version
  • Tibor Tot
    Multiparameter characterization of breast carcinoma: subgross, microscopy, proteins, and genes
    PPT Version | PDF Version
  • Monray Edward Williams
    Molecular validation of putative antimicrobial peptides for improved Human Immunodeficiency Virus diagnostics via HIV protein p24
    PPT Version | PDF Version
  • Kuna Yellamma
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Shigeomi Horito
    Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin
    PPT Version | PDF Version
  • Maria A. Miteva
    In silico screening to discover inhibitors of protein-protein interactions targeting angiogenesis
    PPT Version | PDF Version
  • Konrad Sandhoff
    Lysosomal & extracellular degradation of GlcCer: Protein & lipid modifiers
    PPT Version | PDF Version
  • David Ben-Menahem
    O-glycosylation and protein evolution: the case of the LHb to CGb development
    PPT Version | PDF Version
  • Vladimir Sulimov
    “Vladimir Sulimov-Dimonta-Ltd-and-Lomonosov-Moscow-State-University-Russia-Protein-ligand-low-energy-minima-pose-analysis-Docking-target-functions-evaluation-with-the-FLM-program”
    PPT Version | PDF Version
  • Xingmin Sun
    A chimeric protein (mTcd138) comprising the glucosyltransferase and domains of toxin B and the receptor binding domain of toxin A provides full protection against Clostridium difficile infection in mice
    PPT Version | PDF Version
  • Simon J Clark
    The role of complement factor H-like and factor H-related proteins in age-related macular degeneration
    PPT Version | PDF Version
  • Rivan Sidaly
    Hypoxia increases the expression of enamel proteins and cytokines in an ameloblast-derived cell line
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version