alexa Elucidation of the retention mechanism on a reverse-phase cyano column by modeling.
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): Kouskoura MG, HadjipavlouLitina D, Markopoulou CK, Kouskoura MG, HadjipavlouLitina D, Markopoulou CK

Abstract Share this page

Abstract Partial least squares and quantitative structure-retention relationship models have been used mainly to explain and then to predict the retention mechanism on a cyanopropyl high-performance liquid chromatography column. Developing and applying the models involves studying the chromatographic behavior of 100 probes. Characterization of the probes took place under optimized isocratic conditions at variable proportions of two mobile phase mixtures. Retention time was correlated with numerous physicochemical properties and structural features of the probes. The goodness-of-fit for both models was estimated by the coefficient of multiple determinations, while the prediction of a test set was achieved by the root mean square error of prediction. The contribution of the descriptors in partial least squares is confirmed by the information derived from the variable importance in the projection and loadings plots, while a quantitative structure-retention relationship reflects the behavior model. In both cases, the descriptors determining the retention mechanism are lipophilicity, solubility in water, molecular volume and the presence of -COOH and/or condensed rings. Such techniques are proven useful tools for visualizing, exploring, and modeling the complex interactions between solutes and the mobile and stationary phase while at the same time this information can be quantified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in J Sep Sci and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version