alexa Emissions of N2O from fertilized and grazed grassland on organic soil in relation to groundwater level
Agri and Aquaculture

Agri and Aquaculture

Journal of Fertilizers & Pesticides

Author(s): C L van Beek, M Pleijter, C M J Jacobs, G L Velthof, J W van Groenigen

Abstract Share this page

Intensively managed grasslands on organic soils are a major source of nitrous oxide (N2O) emissions. The Intergovernmental Panel on Climate Change (IPCC) therefore has set the default emission factor at 8 kg N–N2O ha−1 year−1 for cultivation and management of organic soils. Also, the Dutch national reporting methodology for greenhouse gases uses a relatively high calculated emission factor of 4.7 kg N–N2O ha−1 year−1. In addition to cultivation, the IPCC methodology and the Dutch national methodology account for N2O emissions from N inputs through fertilizer applications and animal urine and faeces deposition to estimate annual N2O emissions from cultivated and managed organic soils. However, neither approach accounts for other soil parameters that might control N2O emissions such as groundwater level. In this paper we report on the relations between N2O emissions, N inputs and groundwater level dynamics for a fertilized and grazed grassland on drained peat soil. We measured N2O emissions from fields with different target groundwater levels of 40 cm (‘wet’) and 55 cm (‘dry’) below soil surface in the years 1992, 1993, 2002, 2006 and 2007. Average emissions equalled 29.5 kg N2O–N ha−1 year−1 and 11.6 kg N–N2O ha−1 year−1 for the dry and wet conditions, respectively. Especially under dry conditions, measured N2O emissions exceeded current official estimates using the IPCC methodology and the Dutch national reporting methodology. The N2O–N emissions equalled 8.2 and 3.2% of the total N inputs through fertilizers, manure and cattle droppings for the dry and wet field, respectively and were strongly related to average groundwater level (R2 = 0.74). We argue that this relation should be explored for other sites and could be used to derive accurate emission data for fertilized and grazed grasslands on organic soils.

This article was published in Nutrient Cycling in Agroecosystems and referenced in Journal of Fertilizers & Pesticides

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version