alexa Emmetropia approach dynamics with diurnal dual-phase cycling.


Optometry: Open Access

Author(s): Greene PR, Brown OS, Medina AP, Graupner HB, Greene PR, Brown OS, Medina AP, Graupner HB

Abstract Share this page

Abstract Numerical experiments are performed on a first order exponential response function subjected to a diurnal square wave visual environment with variable duty cycle. The model is directly applicable to exponential drift of focal status. A two-state square wave is employed as the forcing function with high B for time H and low A for time L. Duty cycles of (1/3), (1/2) and (2/3) are calculated in detail. Results show the following standard linear system response: (1) Unless the system runs into the stops, the ready state equilibrium settling level is always between A and B. The level is linearly proportional to a time-weighted average of the high and low states. (2) The effective time constant t(eff) varies hyperbolically with duty cycle. For DC = (1/3) and t1 = 100 days, the effective time constant is lengthened to 300 days. An asymptote is encountered under certain circumstances where t(eff) approaches infinity. (3) Effective time constants and steady state equilibria are independent of square wave frequency f, animal time constant t1, magnitude and sign of A & B, and diurnal sequencing of the highs and lows. By presenting results on dimensionless coordinates, we can predict the drift rates of some animal experiments. Agreement between theory and experiments has a correlation coefficient r = 0.97 for 12 Macaca nemestrina eyes.
This article was published in Vision Res and referenced in Optometry: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version