alexa Empirical Bayes versus fully Bayesian analysis of geographical variation in disease risk.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Bernardinelli L, Montomoli C

Abstract Share this page

Abstract This paper reviews methods for mapping geographical variation in disease incidence and mortality. Recent results in Bayesian hierarchical modelling of relative risk are discussed. Two approaches to relative risk estimation, along with the related computational procedures, are described and compared. The first is an empirical Bayes approach that uses a technique of penalized log-likelihood maximization; the second approach is fully Bayesian, and uses an innovative stochastic simulation technique called the Gibbs sampler. We chose to map geographical variation in breast cancer and Hodgkin's disease mortality as observed in all the health care districts of Sardinia, to illustrate relevant problems, methods and techniques.
This article was published in Stat Med and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords