alexa Encapsulated phase change materials for thermal energy storage: Experiments and simulation


Fermentation Technology

Author(s): M N A Hawlader, M S Uddin

Abstract Share this page

In the present study, encapsulated phase change materials (PCMs) were used for the storage of thermal energy. Both experiments and simulation were performed to evaluate the characteristics of encapsulated PCMs. Tests were conducted in a packed bed to determine the performance of the encapsulated PCM. In the preparation of encapsulated PCMs, the coacervation technique was used. The performance of the encapsulated PCM was evaluated in terms of encapsulation ratio, hydrophilicity, and energy storage capacity. The experiments were designed, based on surface response method, to optimize the processing conditions. It was found that a higher coating to paraffin ratio led to a higher paraffin encapsulation ratio. The hydrophilicity value of encapsulated paraffin depended mainly on the ratio of paraffin to coating. The higher the ratio, the lower was its product hydrophilicity. When the paraffin to coating ratio was constant, the higher concentration of HCHO led to a lower hydrophilicity of the product. The encapsulated paraffin has shown large energy storage and release capacity (20–90 J g−1) during its phase changes depending on different ratios of paraffin to coating. Thermal cyclic test showed that encapsulated paraffin kept its geometrical profile and energy storage capacity even after 1000 cycles of operation. In the experiments and simulation of fluid heating process in encapsulated PCM charged packed bed, results showed that Eulerian granular multiphase model in FLUENT 4.47 is suitable for simulation of such a system.

This article was published in International Journal of Energy Research and referenced in Fermentation Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version