alexa Encoding crystal microstructure and chain folding in the chemical structure of synthetic polymers.


Chemical Sciences Journal

Author(s): Le Fevere de Ten Hove C, Penelle J, Ivanov DA, Jonas AM

Abstract Share this page

Abstract The development of robust methodologies to control the solid-state structure of polymeric materials by appropriate design of the macromolecular architecture has a crucial impact on the mechanical properties of these materials. Here, we demonstrate the feasibility of controlling chain folding of polymers by steric interactions only, in contrast to previous attempts aimed at engineering polymer crystallization through hydrogen bonding. In a linear synthetic macromolecule similar to polyethylene, we encoded structural instructions that are translated during a crystallization process to generate a unique, semi-crystalline morphology with structure-controlled crystal thickness of approximately 5 nm that remains constant over a wide temperature range. The molecular code consists of a linear backbone alternating crystallizable, long alkyl sequences of monodisperse sizes separated by short spacers containing side-chains and acting as stops and fold-controlling units. This simple strategy could be used to produce advanced polymeric materials with fine control of the crystalline and amorphous regions. This article was published in Nat Mater and referenced in Chemical Sciences Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version