alexa Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Wilson RI, Nicoll RA

Abstract Share this page

Abstract Marijuana affects brain function primarily by activating the G-protein-coupled cannabinoid receptor-1 (CB1), which is expressed throughout the brain at high levels. Two endogenous lipids, anandamide and 2-arachidonylglycerol (2-AG), have been identified as CB1 ligands. Depolarized hippocampal neurons rapidly release both anandamide and 2-AG in a Ca2+-dependent manner. In the hippocampus, CB1 is expressed mainly by GABA (gamma-aminobutyric acid)-mediated inhibitory interneurons, where CB1 clusters on the axon terminal. A synthetic CB1 agonist depresses GABA release from hippocampal slices. These findings indicate that the function of endogenous cannabinoids released by depolarized hippocampal neurons might be to downregulate GABA release. Here we show that the transient suppression of GABA-mediated transmission that follows depolarization of hippocampal pyramidal neurons is mediated by retrograde signalling through release of endogenous cannabinoids. Signalling by the endocannabinoid system thus represents a mechanism by which neurons can communicate backwards across synapses to modulate their inputs. This article was published in Nature and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version