alexa Endogenous oxidative damage of mtDNA
Medicine

Medicine

Drug Designing: Open Access

Author(s): Beckman KB, Ames BN

Abstract Share this page

Almost a decade ago, based on analytical measurements of the oxidative DNA adduct 8-oxo-deoxyguanosine (oxo8dG), it was reported that mitochondrial DNA suffers greater endogenous oxidative damage than nuclear DNA. The subsequent discovery that somatic deletions of mitochondrial DNA occur in humans, and that they do so to the greatest extent in metabolically active tissues, strengthened the hypothesis that mitochondrial DNA is particularly susceptible to endogenous oxidative attack. This hypothesis was (and is) appealing for a number of reasons. Nevertheless, solid direct support for the hypothesis is lacking. Since the initial measurements, attempts to repeat the observation of greater oxidation of mitochondrial DNA have resulted in a range of measurements that spans over four orders of magnitude. Moreover, this range includes values that are as low as published values for nuclear DNA. In the last 2 years or so, it has become apparent that the quantification of oxidative DNA adducts is prone to artifactual oxidation. We have reported that the analysis of small quantities of DNA may be particularly susceptible to such interference. Because yields of mitochondrial DNA are generally low, a systematic artifact associated with low quantities of DNA may have elevated the apparent level of adduct oxo8dG in mitochondrial DNA relative to nuclear DNA in some studies. Whatever the cause for the experimental variation, the huge disparity between published measurements of oxidative damage makes it impossible to conclude that mitochondrial DNA suffers greater oxidation than nuclear DNA. Despite the present confusion, however, there are reasons to hypothesize that this is indeed the case. We briefly describe methods being developed by a number of workers that are likely to surmount current obstacles and allow the hypothesis to be tested definitively.

  • To read the full article Visit
  • Open Access
This article was published in Mutat Res and referenced in Drug Designing: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords