alexa Endothelial nitric oxide synthase phosphorylation at Threonine 495 and mitochondrial reactive oxygen species formation in response to a high H₂O₂ concentration.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Metabolic Syndrome

Author(s): Guterbaum TJ, Braunstein TH, Fossum A, HolsteinRathlou NH, TorpPedersen CT,

Abstract Share this page

Abstract BACKGROUND: Hydrogen peroxide (H₂O₂) is produced in vessels during ischemia/reperfusion and during inflammation, both leading to vascular dysfunction. We investigated cellular pathways involved in endothelial nitric oxide synthase (eNOS) phosphorylation at Threonine 495 (Thr(495)) in human umbilical vein endothelial cells (HUVECs) exposed to H₂O₂. METHODS: HUVECs were exposed to 400 μM H₂O₂ for 30 min. Phosphorylation at Thr(495) was assessed by Western blotting and reactive oxygen species (ROS) monitored by flow cytometry. Protein kinase C (PKC) pathways were investigated by pretreatment with PKC-β inhibitor ruboxistaurin or pan-PKC inhibitor GF109203X. In addition, we investigated ROCK and ERK pathways by MEKK1/2 inhibitor U0126 and ROCK inhibitor Y27632. RESULTS: H₂O₂ increased eNOS phosphorylation at Thr(495) (to 176\% vs. control (100\%), p < 0.001) along with increased mitochondrial ROS formation (from 19.7 to 45.3\%, p < 0.01). This rise in phosphorylation could be prevented by U0126 and Y27632 in a dose-dependent manner, but did not result in lowered mitochondrial ROS formation. Conversely, addition of the antioxidant N-acetyl-L-cysteine only prevented mitochondrial ROS formation but did not prevent phosphorylation of eNOS Thr(495). CONCLUSION: H₂O₂-mediated phosphorylation of eNOS Thr(495) is mediated by ROCK and ERK activity, but not by PKC, and is uncoupled from mitochondrial ROS signaling. Furthermore, ERK inhibition increased mitochondrial ROS formation. © 2013 S. Karger AG, Basel. This article was published in J Vasc Res and referenced in Journal of Metabolic Syndrome

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords