alexa Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Scholten JC, Conrad R

Abstract Share this page

Abstract Propionate consumption was studied in syntrophic batch and chemostat cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. The Gibbs free energy available for the H(2)-consuming methanogens was <-20 kJ mol of CH(4)(-1) and thus allowed the synthesis of 1/3 mol of ATP per reaction. The Gibbs free energy available for the propionate oxidizer, on the other hand, was usually >-10 kJ mol of propionate(-1). Nevertheless, the syntrophic coculture grew in the chemostat at steady-state rates of 0.04 to 0. 07 day(-1) and produced maximum biomass yields of 2.6 g mol of propionate(-1) and 7.6 g mol of CH(4)(-1) for S. fumaroxidans and M. hungatei, respectively. The energy efficiency for syntrophic growth of S. fumaroxidans, i.e., the biomass produced per unit of available Gibbs free energy was comparable to a theoretical growth yield of 5 to 12 g mol of ATP(-1). However, a lower growth efficiency was observed when sulfate served as an additional electron acceptor, suggesting inefficient energy conservation in the presence of sulfate. The maintenance Gibbs free energy determined from the maintenance coefficient of syntrophically grown S. fumaroxidans was surprisingly low (0.14 kJ h(-1) mol of biomass C(-1)) compared to the theoretical value. On the other hand, the Gibbs free-energy dissipation per mole of biomass C produced was much higher than expected. We conclude that the small Gibbs free energy available in many methanogenic environments is sufficient for syntrophic propionate oxidizers to survive on a Gibbs free energy that is much lower than that theoretically predicted.
This article was published in Appl Environ Microbiol and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version