alexa Energy-storage capacity of the mitochondrial proton-motive force.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Current Synthetic and Systems Biology

Author(s): Wojtczak L, Zkiewska A, Duszyski J

Abstract Share this page

Abstract Resting state respiration of rat-liver mitochondria in the presence of oligomycin was rapidly blocked with cyanide and the dissipation of the membrane potential was followed with a tetraphenylphosphonium-sensitive electrode. From the rate of this dissipation and the electric capacitance of the mitochondrial membrane the energy stored in form of the membrane potential was calculated as about 7 microJ/mg protein. In the absence of oligomycin, dissipation of the membrane potential was slower, as it was partly compensated by proton ejection by mitochondrial ATPase hydrolyzing endogenous ATP. This allowed to calculate the total energy storage capacity of the proton-motive force. It amounted to the equivalence of 3.3 nmol ATP/mg protein or about 130 microJ/mg protein. The stoichiometry of proton-pumping ATPase utilizing endogenous ATP was estimated as three protons per molecule ATP.
This article was published in Biochim Biophys Acta and referenced in Current Synthetic and Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Nucleic Acids , Molecular Biology & Biologics
    August 31-September 01, 2017 Philadelphia, Pennsylvania, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords