alexa Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl.
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): Wang Y, Li L, Ma C, Gao C, Tao F,

Abstract Share this page

Abstract (2S,3S)-2,3-Butanediol ((2S,3S)-2,3-BD) is a potentially valuable liquid fuel and an excellent building block in asymmetric synthesis. In this study, cofactor engineering was applied to improve the efficiency of (2S,3S)-2,3-BD production and simplify the product purification. Two NADH regeneration enzymes, glucose dehydrogenase and formate dehydrogenase (FDH), were introduced into Escherichia coli with 2,3-BD dehydrogenase, respectively. Introduction of FDH resulted in higher (2S,3S)-2,3-BD concentration, productivity and yield from diacetyl, and large increase in the intracellular NADH concentration. In fed-batch bioconversion, the final titer, productivity and yield of (2S,3S)-2,3-BD on diacetyl reached 31.7 g/L, 2.3 g/(L·h) and 89.8\%, the highest level of (2S,3S)-2,3-BD production thus far. Moreover, cosubstrate formate was almost totally converted to carbon dioxide and no organic acids were produced. The biocatalytic process presented should be a promising route for biotechnological production of NADH-dependent microbial metabolites.
This article was published in Sci Rep and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version