alexa Engineering the CYP101 system for in vivo oxidation of unnatural substrates.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Bell SG, HarfordCross CF, Wong LL

Abstract Share this page

Abstract The protein engineering of CYP enzymes for structure-activity studies and the oxidation of unnatural substrates for biotechnological applications will be greatly facilitated by the availability of functional, whole-cell systems for substrate oxidation. We report the construction of a tricistronic plasmid that expresses the CYP101 monooxygenase from Pseudomonas putida, and its physiological electron transfer co-factor proteins putidaredoxin reductase and putidaredoxin in Escherichia coli, giving a functional in vivo catalytic system. Wild-type CYP101 expressed in this system efficiently transforms camphor to 5-exo-hydroxycamphor without further oxidation to 5-oxo-camphor until >95\% of camphor has been consumed. CYP101 mutants with increased activity for the oxidation of diphenylmethane (the Y96F-I395G mutant), styrene and ethylbenzene (the Y96F-V247L mutant) have been engineered. In particular, the Y96F-V247L mutant shows coupling efficiency of approximately 60\% for styrene and ethylbenzene oxidation, with substrate oxidation rates of approximately 100/min. Escherichia coli cells transformed with tricistronic plasmids expressing these mutants readily gave 100-mg quantities of 4-hydroxydiphenylmethane and 1-phenylethanol in 24-72 h. This new in vivo system can be used for preparative scale reactions for product characterization, and will greatly facilitate directed evolution of the CYP101 enzyme for enhanced activity and selectivity of substrate oxidation.
This article was published in Protein Eng and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords