alexa Enhanced capacity of a widespread strain of Mycobacterium tuberculosis to grow in human macrophages.
Microbiology

Microbiology

Mycobacterial Diseases

Author(s): Zhang M, Gong J, Yang Z, Samten B, Cave MD,

Abstract Share this page

Abstract To determine whether the extent of spread of Mycobacterium tuberculosis strains in the community correlated with their capacity to replicate in human macrophages, intracellular growth rates of M. tuberculosis patient isolates were measured. Strain 210 caused disease in 43 patients in central Los Angeles, 3 "small-cluster" strains caused disease in 8-23 patients, and 5 "unique" strains each caused disease in only 1 patient who was positive by sputum acid-fast smear and spent substantial amounts of time at homeless shelters that were tuberculosis transmission sites. Strain 210 isolates grew significantly more rapidly than small-cluster and unique strains in macrophages. All strains elicited production of similar amounts of tumor necrosis factor-alpha, interleukin (IL)-6, IL-10, and IL-12 and were equally susceptible to reactive nitrogen intermediates. It was concluded that the extensive spread of an M. tuberculosis strain correlated with its capacity to replicate rapidly in human macrophages, which may be a marker of virulence. This article was published in J Infect Dis and referenced in Mycobacterial Diseases

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords