alexa Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution.
Chemical Engineering

Chemical Engineering

Journal of Bioprocessing & Biotechniques

Author(s): Chesnoy S, Huang L

Abstract Share this page

Abstract Intradermal injection of naked DNA results in gene transfer to skin cells, but the efficiency of this gene transfer method is relatively low and variable. We have systematically optimized several parameters to obtain reproducible, high-level gene transfer to the mouse skin. Older mice (approximately 7 weeks) showed a significant decrease in gene expression compared with younger mice (4-5 weeks old). The composition of the solvent vehicle (electrolyte versus nonelectrolyte) strongly affected gene expression in the skin. A higher level of gene expression was achieved when naked DNA was dissolved in isotonic phosphate buffered saline solution compared with isotonic dextrose solution. Finally, transfection efficiency in older mice was greatly improved by increasing the ionic strength of the solvent vehicle. The improved transfection efficiency was due to an enhanced DNA uptake by the skin cells. Gene transfer was most evident in the subdermal smooth muscle cells and epidermal cells. With the optimized conditions, gene transfer mediated by intradermal injection of naked DNA was comparable in efficiency to electroporation. However, cellular distributions of the gene transfer of the two methods were different. This article was published in Mol Ther and referenced in Journal of Bioprocessing & Biotechniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd World Biotechnology Congress
    December 04-06, 2017 Sao Paulo, Brazil

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords