alexa Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum.

Author(s): Garbuz DS, Hu Y, Kim WY, Duan K, Masri BA,

Abstract Share this page

Abstract BACKGROUND: Porous tantalum has been shown to be effective in achieving bone ingrowth. However, in some circumstances, bone quality or quantity may be insufficient to allow adequate bone ingrowth. We hypothesized that local delivery of alendronate from porous tantalum would enhance the ability of the tantalum to achieve bone ingrowth when there is a gap between the implant and bone. We evaluated the effect of alendronate-coated porous tantalum on new bone formation in an animal model incorporating a gap between the implant and bone. METHODS: A cylindrical porous tantalum implant was implanted in the distal part of each femur in eighteen rabbits (a total of thirty-six implants) and left in situ for four weeks. Three types of porous tantalum implants were inserted: those with no coating (the control group), those with microporous calcium phosphate coating, and those coated with microporous calcium phosphate and alendronate. Subcutaneous fluorescent labeling was used to track new bone formation. Bone formation was analyzed with backscattered electron microscopy and fluorescent microscopy of undecalcified samples. RESULTS: The relative increases in the mean volume of gap filling, bone ingrowth, and total bone formation in the group treated with the porous tantalum implants coated with calcium phosphate and alendronate were 143\% (p < 0.001), 259\% (p < 0.001), and 193\% (p < 0.001), respectively, compared with the values in the control group treated with the uncoated porous tantalum implants. The percentage of the length of the implant that was in contact with new bone in the group treated with the calcium phosphate and alendronate coating was increased by an average of 804\% compared with the percentage in the group treated with the uncoated implants. CONCLUSIONS: The study demonstrated significantly enhanced filling of the bone-implant gap and bone ingrowth in association with the porous tantalum implants coated with calcium phosphate and alendronate. This article was published in J Bone Joint Surg Am and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version