alexa Enhanced lysozyme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeast beta-glucan and bacterial lipopolysaccharide.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): Paulsen SM, Engstad RE, Robertsen B

Abstract Share this page

Abstract Atlantic salmon head kidney macrophages grown in the presence of particulate yeast beta-glucan and bacterial lipopolysaccharide (LPS) showed increased production of lysozyme in the culture supernatants compared to non-treated controls. The increased lysozyme production started at day 3 and was five- to six-fold higher compared to controls at day 6 in culture. Beta-glucan showed an approximate linear dose-response curve between 1 and 250 microg x ml(-1) whereas LPS showed a dose-response curve with a well-defined optimum concentration (10 microg x ml(-1)). The increase in lysozyme activity was accompanied by an accumulation of lysozyme gene transcript in the stimulated cells. Recombinant human tumor necrosis factor alpha, known for its ability to stimulate lysozyme in human macrophages and to elevate respiratory burst activity of rainbow trout macrophages, failed to stimulate lysozyme production of Atlantic salmon macrophages. Macrophages isolated from fish suffering from a non-lethal Ichthyobodo necator infection displayed a highly increased ability to produce lysozyme in response to both beta-glucan and LPS. As in higher vertebrates, lysozyme production may reflect the differentiation stage of the Atlantic salmon macrophages as well as a direct activation of lysozyme gene transcription by biological response modifiers. The rather late increase in lysozyme production induced by beta-glucan and LPS may thus be explained by stimulation of differentiation of the macrophages in culture eventually combined with direct activation of transcription of the lysozyme gene. This article was published in Fish Shellfish Immunol and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords