alexa Enhancement of 7-methoxyresorufin O-demethylation activity of human cytochrome P450 1A2 by molecular breeding.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Kim D, Guengerich FP

Abstract Share this page

Abstract Alkylresorufins are model substrates for cytochrome P450 (P450) 1A2. The ability of human P450 1A2 to catalyze 7-methoxyresorufin O-demethylation was improved by screening of random mutant libraries (expressed in Escherichia coli) on the basis of 7-methoxyresorufin O-demethylation. After three rounds of mutagenesis and screening, the triple mutant E163K/V193M/K170Q yielded a kcat > five times faster than wild type P450 1A2 in steady-state kinetic analysis using either isolated membrane fractions or purified, reconstituted enzymes. The enhanced catalytic activity was not attributed to changes in substrate affinity. The kinetic hydrogen isotope effect of the triple mutant did not change from wild type enzyme and suggests that C-H bond cleavage is rate-limiting in both enzymes. Homology modeling, based on an X-ray structure of rabbit P450 2C5, suggests that the locations of mutated residues are not close to the substrate binding site and therefore that structural elements outside of this site play roles in changing the catalytic activity. This approach has potential value in understanding P450 1A2 and generating engineered enzymes with enhanced catalytic activity. This article was published in Arch Biochem Biophys and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version