alexa Enhancement of functional characteristics of mixed lactic culture producing nisin z and exopolysaccharides during continuous prefermentation of milk with immobilized cells.

Author(s): Grattepanche F, Audet P, Lacroix C

Abstract Share this page

Abstract Antagonistic phenomena between strains often occur in mixed cultures containing a bacteriocinogenic strain. A nisin Z producer (Lactococcus lactis ssp. lactis biovar. diacetylactis UL719) and 2 nisin-sensitive strains for acidification (Lactococcus lactis ssp. cremoris ATCC19257) and exopolysaccharide (EPS) production (Lactobacillus rhamnosus RW-9595M) were immobilized separately in gel beads and used to continuously preferment milk at different temperatures, with pH controlled at 6.0 by fresh milk addition. The process showed high volumetric productivity, with an increase from 8.0 to 12.5 L of prefermented milk per liter of reactor volume and hour as the temperature was increased from 27 to 35 degrees C. Lactococcus lactis ssp. lactis biovar. diacetylactis UL719 counts in prefermented and fermented (22-h batch fermentation) milks were stable during 3 wk of continuous fermentation (8.1 +/- 0.1 and 8.9 +/- 0.2 log cfu/mL, respectively). The L. lactis ssp. cremoris population (estimated with real-time quantitative PCR) decreased rapidly during the first week of continuous culture to approximately 4.5 log cfu/mL and remained constant afterward. Lactobacillus rhamnosus counts in prefermented and fermented milks significantly increased with prefermentation time, with no temperature effect. Nisin Z reached high titers in fermented milks (from 177 to 363 IU/mL), with EPS concentration in the range from 43 to 178 mg/L. Immobilization and continuous culture led to important physiological changes, with Lb. rhamnosus becoming much more tolerant to nisin Z, and Lb. rhamnosus and L. lactis ssp. lactis biovar. diacetylactis UL719 exhibiting large increases in milk acidification capacity. Our data showed that continuous milk prefermentation with immobilized cells can stimulate the acidification activity of low-acidifying strains and produce fermented milks with improved and controlled functional properties. This article was published in J Dairy Sci and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version