alexa Enhancing the radiation dose detection sensitivity of optical fibres.
Engineering

Engineering

International Journal of Sensor Networks and Data Communications

Author(s): Bradley DA, Mahdiraji GA, Ghomeishi M, Dermosesian E, Adikan FR,

Abstract Share this page

Abstract A method for improving the thermoluminescence (TL) yield of silica-based optical fibres is demonstrated. Using silica obtained from a single manufacturer, three forms of pure (undoped) fibre (capillary-, flat-, and photonic crystal fibre (PCF)) and two forms of Ge-doped fibre (capillary- and flat-fibre) were fabricated. The pure fibre samples were exposed to 6 and 21MeV electrons, the doped fibres to 6MV photons. The consistent observation of large TL yield enhancement is strongly suggestive of surface-strain defects generation. For 6MeV irradiations of flat-fibre and PCF, respective TL yields per unit mass of about 12.0 and 17.5 times that of the undoped capillary-fibre have been observed. Similarly, by making a Ge-doped capillary-fibre into flat-fibre, the TL response is found to increase by some 6.0 times. Thus, in addition to TL from the presence of a dopant, the increase in fused surface areas of flat-fibres and PCF is seen to be a further important source of TL. The glow-curves of the undoped fibres have been analysed by computational deconvolution. Trap centre energies have been estimated and compared for the various fibre samples. Two trap centre types observed in capillary-fibre are also observed in flat-fibre and PCF. An additional trap centre in flat-fibre and one further trap centre in PCF are observed when compared to capillary fibre. These elevated-energy trap centres are linked with strain-generated defects in the collapsed regions of the flat fibre and PCF. Copyright © 2014 Elsevier Ltd. All rights reserved. This article was published in Appl Radiat Isot and referenced in International Journal of Sensor Networks and Data Communications

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords