alexa Enrichment and characterization of cancer stem‑like cells from a cervical cancer cell line.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Wang L, Guo H, Lin C, Yang L, Wang X

Abstract Share this page

Abstract Cancer stem cells (CSCs) are proposed to be responsible for tumor recurrence, metastasis and the high mortality rate of cancer patients. Isolation and identification of CSCs is crucial for basic and preclinical studies. However, as there are currently no universal markers for the isolation and identification of CSCs in any type of cancer, the method for isolating CSCs from primary cancer tissues or cell lines is costly and ineffective. In order to establish a reliable model of cervical cancer stem cells for basic and preclinical studies, the present study was designed to enrich cervical cancer CSCs using a nonadhesive culture system and to characterize their partial stemness phenotypes. Human cervical cancer cells (HeLa) were cultured using a nonadhesive culture system to generate tumor spheres. Their stemness characteristics were investigated through colony formation, tumor sphere formation, self-renewal, toluidine blue staining, chemoresistance, invasion assays, reverse transcription-polymerase chain reaction, immunofluorescence staining of putative stem cell markers, including octamer-binding transcription factor 4, SRY-box 2 and aldehyde dehydrogenase 1 family, member A1, and adipogenic differentiation induction. Typical tumor spheres were formed within 5-7 days under this nonadhesive culture system. Compared with the adherent parental HeLa cells, the colony formation capacity, self-renewal potential, light cell population, cell invasion, chemoresistance and expression of putative stem cell markers of the tumor sphere cells increased significantly, and a subpopulation of tumor sphere cells were induced into adipogenic differentiation. Using the nonadhesive culture system, a reliable model of cervical cancer stem cells was established, which is inexpensive, effective and simple compared with the ultra-low attachment serum free culture method. The stemness characteristics of the tumor sphere HeLa cells mirrored the CSC phenotypes. This CSC model may be useful for basic and preclinical studies of cervical cancer and other types of cancer.
This article was published in Mol Med Rep and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords