alexa Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth River sediments.
Agri and Aquaculture

Agri and Aquaculture

Journal of Aquaculture Research & Development

Author(s): Hilyard EJ, JonesMeehan JM, Spargo BJ, Hill RT

Abstract Share this page

Abstract The diversity of indigenous bacteria in sediments from several sites in the Elizabeth River (Virginia) able to degrade multiple polycyclic aromatic hydrocarbons (PAHs) was investigated by the use of classical selective enrichment and molecular analyses. Enrichment cultures containing naphthalene, phenanthrene, fluoranthene, or pyrene as a sole carbon and energy source were monitored by denaturing gradient gel electrophoresis (DGGE) to detect changes in the bacterial-community profile during enrichment and to determine whether the representative strains present were successfully cultured. The DGGE profiles of the final enrichments grown solely on naphthalene and pyrene showed no clear relationship with the site from which the inoculum was obtained. The enrichments grown solely on pyrene for two sample sites had >80\% similarity, which suggests that common pyrene-degrading strains may be present in these sediments. The final enrichments grown on fluoranthene and phenanthrene remained diverse by site, suggesting that these strains may be influenced by environmental conditions. One hundred and one isolates were obtained, comprising representatives of the actinomycetes and alpha-, beta-, and gammaproteobacteria, including seven novel isolates with 16S rRNA gene sequences less than 98\% similar to known strains. The ability to degrade multiple PAHs was demonstrated by mineralization of 14C-labeled substrate and growth in pure culture. This supports our hypothesis that a high diversity of bacterial strains with the ability to degrade multiple PAHs can be confirmed by the combined use of classical selective enrichment and molecular analyses. This large collection of diverse PAH-degrading strains provides a valuable resource for studies on mechanisms of PAH degradation and bioremediation.
This article was published in Appl Environ Microbiol and referenced in Journal of Aquaculture Research & Development

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords