alexa Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov.
Microbiology

Microbiology

Applied Microbiology: Open Access

Author(s): Brenner DJ, McWhorter AC, Kai A, Steigerwalt AG, Farmer JJ rd

Abstract Share this page

Abstract Enterobacter asburiae sp. nov. is a new species that was formerly referred to as Enteric Group 17 and that consists of 71 strains, 70 of which were isolated from humans. Enterobacter asburiae sp. nov. strains gave positive reactions in tests for methyl red, citrate utilization (Simmons and Christensen's), urea hydrolysis, L-ornithine decarboxylase, growth in KCN, acid and gas production from D-glucose, and acid production from L-arabinose, cellobiose, glycerol (negative in 1 to 2 days, positive in 3 to 7 days), lactose, D-mannitol, alpha-methyl-D-glucoside, salicin, D-sorbitol, sucrose, trehalose, and D-xylose. They gave negative reactions in the Voges-Proskauer test and in tests for indole, H2S production, phenylalanine, L-lysine decarboxylase, motility, gelatin, utilization of malonate, lipase, DNase, tyrosine clearing, acid production from adonitol, D-arabitol, dulcitol, erythritol, i(myo)-inositol, melibiose, and L-rhamnose. They gave variable reactions in tests for L-arginine dihydrolase (25\% positive after 2 days) and acid production from raffinose (69\% positive after 2 days). Thirty-four Enterobacter asburiae sp. nov. strains were tested for DNA relatedness by the hydroxyapatite method with 32PO4-labeled DNA from the designated type strain (1497-78, ATCC 35953). The strains were 69 to 100\% related in 60 degrees C reactions and 63 to 100\% related in 75 degrees C reactions. Divergence within related sequences was 0 to 2.5\%. Relatedness of Enterobacter asburiae sp. nov. to 84 strains of members of the Enterobacteriaceae was 5 to 63\%, with closest relatedness to strains of Enterobacter cloacae, Erwinia dissolvens, Enterobacter taylorae, Enterobacter agglomerans, Erwinia nimipressuralis, and Enterobacter gergoviae. All strains tested were susceptible to gentamicin and sulfdiazine, and most were susceptible to chloramphenicol, colistin, kanamycin, nalidixic acid, carbenicillin and streptomycin. All strains were resistant to ampicillan, cephalothin, and penicillin, and most were resistant or moderately resistant to tetracycline. Enterobacter asburiae sp. nov strains were isolated from a variety of human sources, most prevalent of which were urine (16 strains), respiratory sources (15 strains), stools (12 strains), wounds (11 strains), and blood (7 strains). The clinical significance of Enterobacter aburiae is not known. As a result of this and previous studies, proposals are made to transfer Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov., respectively.
This article was published in J Clin Microbiol and referenced in Applied Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]om

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords