alexa Enzyme activity control by responsive redoxpolymers.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Nagel B, Warsinke A, Katterle M

Abstract Share this page

Abstract A new thermoresponsive poly-N-isopropylacrylamide (PNIPAM)-ferrocene polymer was synthesized and characterized. PNIPAMFoxy bears additional oxirane groups which were used for attachment by a self-assembly process on a cysteamine-modified gold electrode to create a thin hydrophilic film. The new redox polymer enabled electrical communication between the cofactor pyrrolinoquinoline quinone (PQQ) of soluble glucose dehydrogenase (sGDH) and the electrode for sensitive detection of this enzyme as a prospective protein label. The temperature influence on the redox polymer/enzyme complex was investigated. An inverse temperature response behavior of surface bound PNIPAMFoxy compared to the soluble polymer was found and is discussed in detail. The highest efficiency of mediated electron transfer for the immobilized PNIPAMFoxy with sGDH was observed at 24 degrees C, which was twice as high as that of its soluble counterpart. A steady-state electrooxidation current densitiy of 4.5 microA.cm-2 was observed in the presence of 10 nM sGDH and 5 mM glucose. A detection limit of 0.5 nM of soluble PQQ-sGDH was obtained. This article was published in Langmuir and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords