alexa Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Clinical & Experimental Pharmacology

Author(s): Holz GG

Abstract Share this page

Abstract Recently published studies of islet cell function reveal unexpected features of glucagon-like peptide-1 (GLP-1) receptor-mediated signal transduction in the pancreatic beta-cell. Although GLP-1 is established to be a cAMP-elevating agent, these studies demonstrate that protein kinase A (PKA) is not the only cAMP-binding protein by which GLP-1 acts. Instead, an alternative cAMP signaling mechanism has been described, one in which GLP-1 activates cAMP-binding proteins designated as cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac). Two variants of Epac (Epac1 and Epac2) are expressed in beta-cells, and downregulation of Epac function diminishes stimulatory effects of GLP-1 on beta-cell Ca(2+) signaling and insulin secretion. Of particular note are new reports demonstrating that Epac couples beta-cell cAMP production to the stimulation of fast Ca(2+)-dependent exocytosis. It is also reported that Epac mediates the cAMP-dependent mobilization of Ca(2+) from intracellular Ca(2+) stores. This is a process of Ca(2+)-induced Ca(2+) release (CICR), and it generates an increase of [Ca(2+)](i) that may serve as a direct stimulus for mitochondrial ATP production and secretory granule exocytosis. This article summarizes new findings concerning GLP-1 receptor-mediated signal transduction and seeks to define the relative importance of Epac and PKA to beta-cell stimulus-secretion coupling.
This article was published in Diabetes and referenced in Journal of Clinical & Experimental Pharmacology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords