alexa Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): WeekeKlimp A, Bax NA, Bellu AR, Winter EM, Vrolijk J,

Abstract Share this page

Abstract During heart development, cells from the proepicardial organ spread over the naked heart tube to form the epicardium. From here, epicardium-derived cells (EPDCs) migrate into the myocardium. EPDCs proved to be indispensable for the formation of the ventricular compact zone and myocardial maturation, by largely unknown mechanisms. In this study we investigated in vitro how EPDCs affect cardiomyocyte proliferation, cellular alignment and contraction, as well as the expression and cellular distribution of proteins involved in myocardial maturation. Embryonic quail EPDCs induced proliferation of neonatal mouse cardiomyocytes. This required cell-cell interactions, as proliferation was not observed in transwell cocultures. Western blot analysis showed elevated levels of electrical and mechanical junctions (connexin43, N-cadherin), sarcomeric proteins (Troponin-I, alpha-actinin), extracellular matrix (collagen I and periostin) in cocultures of EPDCs and cardiomyocytes. Immunohistochemistry indicated more membrane-bound expression of Cx43, N-cadherin, the mechanotransduction molecule focal adhesion kinase, and higher expression of the sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a). Newly developed software for analysis of directionality in immunofluorescent stainings showed a quantitatively determined enhanced cellular alignment of cardiomyocytes. This was functionally related to increased contraction. The in vitro effects of EPDCs on cardiomyocytes were confirmed in three reciprocal in vivo models for EPDC-depletion (chicken and mice) in which downregulation of myocardial N-cadherin, Cx43, and FAK were observed. In conclusion, direct interaction of EPDCs with cardiomyocytes induced proliferation, correct mechanical and electrical coupling of cardiomyocytes, ECM-deposition and concurrent establishment of cellular array. These findings implicate that EPDCs are ideal candidates as adjuvant cells for cardiomyocyte integration during cardiac (stem) cell therapy. Copyright 2010 Elsevier Ltd. All rights reserved. This article was published in J Mol Cell Cardiol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords