alexa Epigenetic silencing of interferon-kappa in human papillomavirus type 16-positive cells.
Immunology

Immunology

Immunotherapy: Open Access

Author(s): RinconOrozco B, Halec G, Rosenberger S, Muschik D, Nindl I, , RinconOrozco B, Halec G, Rosenberger S, Muschik D, Nindl I, , RinconOrozco B, Halec G, Rosenberger S, Muschik D, Nindl I, , RinconOrozco B, Halec G, Rosenberger S, Muschik D, Nindl I,

Abstract Share this page

Abstract We have investigated interferon-kappa (IFN-kappa) regulation in the context of human papillomavirus (HPV)-induced carcinogenesis using primary human foreskin keratinocytes (HFK), immortalized HFKs encoding individual oncoproteins of HPV16 (E6, E7, and E6/E7), and cervical carcinoma cells. Here, IFN-kappa was suppressed in the presence of E6, whereas its expression was not affected in HFKs or E7-immortalized HFKs. Transcription could be reactivated after DNA demethylation but was decreased again upon drug removal. Partial reactivation could also be accomplished when E6 was knocked down, suggesting a contribution of E6 in IFN-kappa de novo methylation. We identified a single CpG island near the transcriptional start site as being involved in selective IFN-kappa expression. To prove the functional relevance of IFN-kappa in building up an antiviral response, IFN-kappa was ectopically expressed in cervical carcinoma cells where protection against vesicular stomatitis virus-mediated cytolysis could be achieved. Reconstitution of IFN-kappa was accompanied by an increase of p53, MxA, and IFN-regulatory factors, which was reversed by knocking down either IFN-kappa or p53 by small interfering RNA. This suggests the existence of a positive feedback loop between IFN-kappa, p53, and components of IFN signaling pathway to maintain an antiviral state. Our in vitro findings were further corroborated in biopsy samples of cervical cancer patients, in which IFN-kappa was also downregulated when compared with normal donor tissue. This is the first report showing an epigenetic silencing of type I IFN after HPV16 oncogene expression and revealing a novel strategy on how high-risk HPVs can abolish the innate immune response in their genuine host cells. This article was published in Cancer Res and referenced in Immunotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords