alexa Erythrocyte programmed cell death.


Journal of Blood Disorders & Transfusion

Author(s): Fller M, Huber SM, Lang F, Fller M, Huber SM, Lang F

Abstract Share this page

Abstract Eryptosis, the suicidal death of erythrocytes, is characterised by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognised by macrophages, which engulf and degrade the affected cells. Reported triggers of eryptosis include osmotic shock, oxidative stress, energy depletion, ceramide, prostaglandin E(2), platelet activating factor, hemolysin, listeriolysin, paclitaxel, chlorpromazine, cyclosporine, methylglyoxal, amyloid peptides, anandamide, Bay-5884, curcumin, valinomycin, aluminium, mercury, lead and copper. Diseases associated with accelerated eryptosis include sepsis, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency, hemolytic uremic syndrome and Wilsons disease. Eryptosis may be inhibited by erythropoietin, adenosine, catecholamines, nitric oxide (NO) and activation of G-kinase. Most triggers of eryptosis except oxidative stress are effective without activation of caspases. Their signalling involves formation of prostaglandin E(2) with subsequent activation of cation channels and Ca2+ entry and/or release of platelet activating factor (PAF) with subsequent activation of sphingomyelinase and formation of ceramide. Ca2+ and ceramide stimulate scrambling of the cell membrane. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and cell shrinkage and stimulates the protease calpain resulting in degradation of the cytoskeleton. Eryptosis allows defective erythrocytes to escape hemolysis. On the other hand, excessive eryptosis favours the development of anemia. Thus, a delicate balance between proeryptotic and antieryptotic mechanisms is required to maintain an adequate number of circulating erythrocytes and yet avoid noneryptotic death of injured erythrocytes. This article was published in IUBMB Life and referenced in Journal of Blood Disorders & Transfusion

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version