alexa Erythrocytic mechanism of sickle cell resistance to malaria.
Infectious Diseases

Infectious Diseases

Malaria Control & Elimination

Author(s): Friedman MJ

Abstract Share this page

Abstract The physiological basis for the resistance to falciparum malaria individuals with sickle cell trait has not been understood. Recent advances in erythrocytic Plasmodium falciparum culture have made possible a direct investigation of the development of the malaria parasite in cells with sickle cell homoglobin. In a high (18\%) oxygen atmosphere, there is no apparent sickling of cells, and the growth and multiplication of P. falciparum is identical in normal (AA), hemoglobin S homozygous (SS), and hemoglobin S heterozygous (SA) erythrocytes. Cultures under low (1-5\%) oxygen, however, showed clear inhibition of growth. The sickling of SS red cells killed and lysed most or all of the intracellular parasites. Parasites in SA red cells were killed primarily at the large ring stage, probably as a result of a disruption of the parasite metabolism. Incubation in cyanate prior to culture reversed the resistance of SA erythrocytes to plasmodium growth, but had no effect on SS red cell sickling or resistance. Thus, the mechanism of resistance in vivo may be due solely to intraerythrocytic conditions.
This article was published in Proc Natl Acad Sci U S A and referenced in Malaria Control & Elimination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

bus[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords