alexa Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R

Abstract Share this page

Abstract Recently, erythropoietin has been shown to be produced by astrocytes and its production is hypoxia-inducible. In the present study, we demonstrated, using a reverse transcription-polymerase chain reaction assay and immunostaining of the cells, that the erythropoietin receptor was expressed in cultured hippocampal and cerebral cortical neurons of day 19 rat embryo. Erythropoietin protected the cultured neurons from glutamate neurotoxicity. Neurons cultured for seven to 10 days were exposed to glutamate for 15 min and after culture for a further 24 h in the absence of glutamate the neuron survival was assayed. Significant protection was observed with erythropoietin from 3 pM (c. 100 pg/ml) in a dose-dependent manner. The protection was completely reversed by co-application of a soluble erythropoietin receptor, an extracellular domain capable of binding with erythropoietin. For exhibition of the neuroprotective effect, exposure of neurons to erythropoietin approximately 8 h prior to exposure to glutamate was required. Experiments with the inhibitors indicated that RNA and protein syntheses were necessary for the protection. However, exposure to erythropoietin for a short period (5 min or less) was sufficient to elicit the protective effect. The protective effect of erythropoietin was blocked by the simultaneous addition of EGTA. These findings and the previous finding that erythropoietin induces a rapid and transient increase in intracellular Ca2+ concentration in neuronal cells suggest that erythropoietin plays a neuroprotective role in brain injury caused by hypoxia or ischemia and that erythropoietin-induced Ca2+ influx from outside of the cells is a critical initial event yielding an enhanced resistance of the neurons to glutamate toxicity.
This article was published in Neuroscience and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version